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ABSTRACT: The high frequency behavior of the bulk modulus of fluid-saturated rock can be obtained from a
double-porosity constitutive model, which is a direct conceptual extension of Biot’s (1941) constitutive equa-
tions and which provides additional stiffening due to unrelaxed induced pore pressures in the soft porosity
phase. Modeling the stiffening of the shear modulus at high frequency requires an effective medium average
over the unequal induced pore pressures in cracks of different orientations. The implicit assumptions are that
pore fluid equilibration does not occur between cracks of different orientations and between cracks and porous
matrix. The correspondence between the constitutive equations of Berryman and Wang (1995) and Mavko and
Jizba (1991) is explicitly noted.

INTRODUCTION

Biot’s theory of wave propagation in a fluid-saturated,
porous medium (Biot 1962a,b) tends to predict
smaller amounts of velocity dispersion and wave at-
tenuation in rock than is observed from measurements
at ultrasonic frequencies (Winkler 1985; 1986). The
discrepancy has usually been attributed to rock mi-
crostructural effects. Fluid flowing in cracks that con-
nect pores adds a grain-scale, ’local’ flow mecha-
nism to account for the discrepancy. Mavko and Jizba
(1991) developed a method to estimate the change 
bulk and shear modulus between low and high fre-
quency based on a model in which the stiffening is
the result of unrelaxed induced pore pressures. The
behavior at low frequencies is the same as for dry
(drained) cracks and, at high frequencies, it is the
same as for isolated (undrained) fluid-filled cracks.
The model inputs are the pressure-dependence of the
drained (dry) moduli.

In this paper we show the equivalence of Mavko
and Jizba’s formulation for bulk modulus to our phe-
nomenological extension of Biot’s quasistatic consti-
tutive equations to a double porosity medium (Berry-
man and Wang 1995). A problem arises, however, for
the shear modulus because no pore pressure changes
are induced by shear stress in Biot theory. The solu-
tion requires addition of an effective medium compo-
nent to the theory (Berryman and Wang 2001). Our
focus is to show the one-to-one correspondence be-
tween the constants appearing in the two approaches.

CONSTITUTIVE EQUATIONS
Berryman and Wang’s (1995) constitutive theory for 
fluid-saturated, double-porosity medium extends for-
mally Biot’s single porosity theory (Biot 1941). The
main postulate is the linearity of the dependence
of strains and fluid-mass content on all the applied
stresses and internal pore pressures. Initially it will be
sufficient to describe the constitutive equations for a
confining pressure pc as the applied stress. A separate
pore pressure can be maintained in each phase, desig-

nated p}’ (1) and p~2). Generally, phase (1)is consid-
ered to be a matrix containing stiff pores and phase
(2) is interpreted to consist of soft cracks. Then

(1)

where e is volumetric strain, Pc is confining pressure
(equal to the negative of the mean stress with the
convention that extensional stresses are positive), (1)

is the increment of fluid content in the matrix, and
5(2) is the increment of fluid content in the fracture.
The coefficient matrix is symmetric. The coefficients
-a12 and -a~a can be interpreted as poroelastic ex-
pansion coefficients, analogous to thermal expansion,
because they represent the volumetric strain induced
as a result of a fluid pressure increment in the stiff
and soft porosity, respectively, while holding the ex-
ternal stress constant and the opposite phase drained.



The submatrix elements a22, a33, and a23 are storage
coefficients of the matrix. Berryman and Wang (1995)
argued that the cross-storage coefficient a23 may often
be considered to be negligible.

UNRELAXED BULK MODULUS

Mavko and Jizba (1991) considered the pore space 
the rock to consist of a distribution of crack shapes,
which they divided into sets labeled i. To a first ap-
proximation, many rocks can be idealized by a bi-
modal pore shape distribution in which cracks con-
stitute one porosity and equant pores constitute the
second porosity. Mechanically, cracks are compliant,
or ’soft,’ and pores are relatively incompressible, or
’stiff.’ Hydraulically, cracks can be isolated. Mavko
and Jizba attributed the high frequency values of bulk
and shear moduli to unrelaxed (undrained) induced
pore pressures in the thinnest (crack) porosity. Fig. 
shows schematically various combinations of fluid-
pressure relations between the two types of porosity.
The stiffest combination is when no local or global
flow occurs in either the stiff or soft porosity, i.e.,
the induced fluid pressures are completely unrelaxed.
Mavko and Jizba have made one choice among these
alternatives, each of which can be treated explicitly in
the context of the double-porosity formulation.

To show the equivalence between results obtained
from our constitutive equations with the results of
Mavko and Jizba (1991), we calculate the com-
pressibility defined for a state in which cracks are
undrained (5C(2) = 0) while the matrix is drained

(@(1) = 0). These conditions are also illustrated
schematically in Fig. 1. Application of the Mavko and
Jizba conditions leads to [see Berryman and Wang
1995, Eqns. (36)-(38)]:

e = -allpc - a13p~2)

--4 (1) = --a2iPc -- a23P~z)

0 = --a31Pc -- a33P(2)

(2)

(3)

(4)

Then, Eqn. (4) directly leads to the pore pressure
buildup coefficient for the undrained pore pressure in
the soft (crack) porosity phase:

B[u(2)] -_- OP~2) a31 (5)

And the effective bulk modulus for an undrained
crack porosity phase is

1
Oove, (i)K[u(2)] -- = all + a13B[u(2)],Pc 6X(2)=Sp f =o

(6)
where all = 1/K is the drained bulk compressibility
and -a13 is the poroelastic expansion coefficient for
the crack phase, i.e., the volumetric strain due to an in-
crement in the fluid pressure in the crack phase while
maintaining the external stress constant and drained
conditions in the stiff porosity phase. Eqn. (6) carries
the physical interpretation that the partially undrained
strain is the difference between the totally drained
strain and the poroelastic expansion due to the in-
duced undrained pore pressure in the soft porosity
phase.

Eqn. (6) can be expressed in the alternative form
1

K[~t(1)] + a12 = (all -k- a12 + ai3) + (a13 -4- a33)B[u(2)].

(7)
The sum [-(all + a12 + a13)] is readily observed from
the top row of Eqn. (1) to be the unjacketed compress-
ibility, l/Ks, defined by the conditions that ~Pc =
5p~1) = @~2). Eqn. (7) is exact, but an approximate
expression, based on the reasonable assumption, that
a23 = 0 is given by [see Berryman and Wang 1995,
following their Eqn. (77)]:

__V(1) O~(1)
V(1) [ 1. 1a12 K(1)

~/((1) K!I) , 

where v(1) is the volume fraction of phase 1 (approxi-
mately one), a(1) is the Biot-Willis parameter of phase
1 alone, K(1) is the bulk modulus of phase t alone,
and Ks(1) is the unjacketed bulk modulus of phase 
alone. These values for the matrix phase are obtain-
able from a typical laboratory experiment in which
elastic moduli of a dry sample are measured as a func-
tion of confining pressure (e.g., Coyner 1984) by ob-
taining the slope of the strain with confining pressure
at a pressure above which the cracks are closed (25
MPa).

The second result we will use, which also follows
from the assumption that a23 = 0, is that [see Berry-
man and Wang 1995, their Eqns. (60) and (76), 
discussion immediately following Eqn. (77)]:

v(2i
a13 + a33 ~ -- (9)

where v(2) is the volume fraction of phase 2 (small
compared with one) and/(f is the fluid bulk modulus.
Therefore, Eqn. (7) becomes

1 1 v(1)[/~ 1 v( 2_~iB[u(2!]"
1) K I/ 

(10)



Eqn. (10) is essentially the same result as Mavko and
Jizba’s Eqn. (8) for the case of bimodal porosity (cf.
comparison of notation in Table 1), if we identify their
term (drb/dCr)drained with the first term on the right-
hand side of Eqn. (10), [cf. statement immediately
preceding their Eqn. (9)].

UNRELAXED SHEAR MODULUS

In the double-porosity formulation, the shear modu-
lus is still independent of the properties of the satu-
rating fluids, i.e., undrained (wet) and drained (dry)
shear moduli remain identical at higher frequencies,
barring chemical effects (Berryman and Wang 2001).
But experimentally and in effective medium theories,
the presence of the liquid results in an increase in the
shear modulus, even though the liquid shear modulus
is zero. Why is that? The reason is that in an inho-
mogeneous medium, when we apply stress or strain
at the macroscopic scale, that stress or strain gets re-
solved locally in a complicated way because of the in-
homogeneities. An applied external compression can
produce a shear field locally, and an applied external
pure shear can produce a compression locally. That
is the physical source of the effect. If we apply an
external shear to a porous medium containing liquid,
it matters that the liquid is present and not replaced
by air. It matters because the external shear can be
resolved into local compression in some regions con-
taining the liquid. In these regions, the liquid can sup-
port the compression (but not a shear), and therefore
the liquid stores some of the energy applied to the sys-
tem by the external shearing force. On the other hand,
if the liquid has enough time (and finite permeability
permits it) to move out of the way, it can relax to 
state that does not support any of the local compres-
sion, and then we have Gassmann’s result (Gassmann
1951).

Mavko and Jizba (1991) derived an expression for
shear stiffening at high frequencies by examining the
consequence of the soft porosity being randomly ori-
ented. Different pore pressures are induced in soft
porosity with different orientations because a crack is
compliant in the direction normal to its plane but stiff
in the plane parallel to the crack. Mavko and Jizba
assumed that each compliant crack has a direction
of maximum compression and that perpendicular to
this direction compressibility is negligible, that is, a
crack is compressible only perpendicular to its plane
and is infinitely stiff to any shear and normal stress
in the plane of the crack. Thus, the soft porosity has
the characteristics of penny-shaped cracks with very
small aspect ratios. Mavko and Jizba estimated the
change in shear modulus with saturation as a func-
tion of crack orientation and averaged over all solid
angles. They found that the difference between the
reciprocals of drained and undrained shear modulus

is proportional to the difference between drained and
undrained compressibility:

The factor of 4/15 was the result of volume averag-
ing over a uniform distribution of crack orientations.
We note that Eqn. (11) carries the assumption that the
different induced pore pressures in cracks of different
orientation do not equilibrate.

Eqn. (11) can be obtained in a more formal man-
ner, under the same assumptions as Mavko and Jizba
(1991). In Barenblatt et al.’s (1960) picture of a 
ble porosity material (Fig. 2), we take the heavy
polygonal line segments to represent cracks bound-
ing porous matrix. Locally a rock is anisotropic due
to oriented cracks, but it can still be macroscopi-
cally isotropic when volume averaged. We consider
the region surrounding each line segment to be an
anisotropic element in terms of its elastic proper-
ties. This local region can experience an induced pore
pressure in response to a shear stress, because pure
shear in an anisotropic material induces a volume
change (Cheng 1997). On this very local scale, the
constitutive equation has the general form:

(12)

where the matrix M =

1
Gt

1
Gt

1
Gdr

’The shear stiffening occurs all as a result of the crack
porosity, so the increment of fluid content and pore
pressure for the porous matrix have been dropped in
Eqn. (12). The Reuss averages for the reciprocals 
saturated bulk and shear modulus are (Berryman and
Wang 2001):

cdry A cdry= 2s 7 + + +



(23(1) +/3(3))2
7

(13)

t

1

8S v+ -~’33 -=’--.’12 -’,-’,--’13 +
1,.9

¢,a,’v ,~¢d,’v~ 4 (~(1) _ ~(3))2.(14)
~-"44 -4-’-’~66 ) 15

7

Hence, the Reuss averages for the differences be-
tween the dry and saturated reciprocals of bulk and
shear modulus for an isotropic aggregate of these
transversely isotropic crack elements become

1 1 (2/~(1) _.~ ~(3))2

KRdry K~at "7
(15)

1 1 4 (/3(1) _/3(3))2
Gd~V G ~t 15 "7R

(16)

Eqn. (16) can be rewritten in the form

y-jdry

1-4\ GR 

(17)

where B = (2/3(1) +/3(3))/7 is the Skempton coeffi-
cient. Eqn. (17) can be compared with the standard
poroelastic relationship

~dry

1 - aB’
(18)

where the Biot-Willis coefficient cr = 1 - Kdry/Ks
and Ks is the unjacketed bulk modulus.

The Mavko and Jizba (1991) approximation is that
the only non-zero compliance in a local coordinate
system is $33 as is fl(3), and all other Sij = 0 and
/3(1) = 0. This assumption leads directly to the pro-
portionality [see Eqn. (11)], which can be seen to be 
consequence of the extremely simple compliance ten-
sor for a crack. Eqn. (11) is the Reuss average, which
is a lower bound. Berryman and Wang (2001) calcu-
lated Voigt and Reuss bounds for an example based
on Berea sandstone values, which suggested, but did
not prove, the shear modulus dependence on the pore
liquid properties shown by the Reuss average.

The proportionality constant of 4/15 in Eqn. (11)
is the limiting case only for cracks with very low
aspect ratio, because the constant tends toward zero

for spherical porosity (Mavko and Jizba 1991; Go-
ertz and Knight 1998). While the derivation leading
to Eqn. (11) might make it appear that the factor 
4/15 is an upper bound for aspect ratios approaching
zero, Berryman et al. (2002) used a differential effec-
tive medium approach to show that the result depends
also on the assumption of a very small crack porosity.
The factor 4/15 underestimates the ratio when signif-
icant amounts of soft porosity are present.

DISCUSSION
Rock porosity occurs as a distribution of geometric
shapes with associated differences in mechanical be-
havior. The preceding derivations for unrelaxed bulk
modulus and shear modulus are based on a double
porosity approximation, which is readily generaliz-
able to multiple porosities. The response to bulk and
shear deformations can be categorized into several
different frequency ranges based on the degree of
fluid-pressure equilibration by local fluid flow within
and between the pores and cracks (Thomsen 1995;
Pointer et al. 2000). Low-frequencies are defined by
locally-equilibrated fluid pressure between cracks and
between cracks and adjacent pores. For this assump-
tion to hold, the characteristic fluid diffusion distance
over one period is short relative to the wavelength
but long relative to the microstructural scale. At the
’moderately high frequencies’ associated with ultra-
sonic frequencies defined by Thomsen (1995), fluid
does not move at all between cracks and pores. In be-
tween is a ’squirt flow’ frequency at which significant
energy loss due to local fluid flow can occur (Dvorkin
et al. 1995).

Mavko and Jizba (1991) assumed that the equant
porosity is drained. This assumption can be satisfied
either by permeability sufficiently high to drain the
equant porosity over a distance scale of the wave-
length or by a very low Skempton’s coefficient in
the porous matrix phase. At the same time they as-
sumed that the crack porosity did not drain to the
equant porosity. In general, softening occurs when
excess fluid pressure in cracks is dissipated into the
more voluminous equant porosity. The equant poros-
ity can also be a conduit for fluid communication be-
tween cracks, but flow between cracks will still be
rate limited by fluid diffusion within cracks. The dual

formulation carries the assumption that p(/)porosity

and p~2) are averages over representative elementary
volumes, thereby implying pressure communication
within a given porosity fraction. Hence, at this level
of modeling, shear behavior is frequency indepen-
dent. Therefore, to have a theory consistent with the
physical problem, it is necessary to treat delays in
fluid communication between individual cracks under
shear deformation more realistically, thereby stiffen-
ing the shear modulus as different induced fluid pres-



sures are obtained in individual cracks. One simple
way to introduce such as effect is to consider cracks
of different orientation as individual sets that are not
in fluid communication.

If Skempton’s coefficient in the porous matrix
phase has an intermediate value, then the appropriate
unrelaxed bulk modulus for the high frequency elastic
behavior might be the instantaneous undrained case
represented in Fig. 1. One advantage of the consti-
tutive theory approach is that it can be extended to
elastic wave propagation, incorporating the appropri-
ate permeabilities, to account for velocity dispersion
as a function of intermediate frequencies (Berryman
and Wang 2000).

CONCLUSIONS
A correspondence was established between the con-
stitutive theory for a double porosity medium by
Berryman and Wang (1995) and the expressions ob-
tained by Mavko and Jizba (1991) for the effects 
fluid saturation on bulk and shear moduli. The stiff-
ening of the shear modulus with liquid saturation re-
quired explicit consideration of the anisotropic behav-
ior of individually oriented cracks. In particular, the
derivation carried the assumption that no fluid com-
munication occurs between cracks of different orien-
tations and that no fluid communication occurs be-
tween cracks and equant porosity of the porous ma-
trix.
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Berryman and Wang (1995) Mavko and Jizba (1991)
Equant porosity
Crack porosity
Saturated bulk modulus
Bulk modulus of mineral grains
Bulk modulus of dry rock
Bulk modulus of pore fluid
Unrelaxed frame bulk modulus
Hydrostatic stress
Volume of unrelaxed pore space
Induced pore pressure in unrelaxed pore space
Porosity of undrained pore space
Total volume
Pore compressibility at constant differential stress

superscript (1) stiff porosity
superscript (2) soft porosity

K. Kgs
K" Ko
K K~

K[u(2)] Kuf
-@~ Aa
V(2) Vpi where i = 2

V(2) -- V(2)/V ¢(i) ~ Vpi/V

V V
1/K* 1/K¢

Table 1: Notational correspondence between Berryman and Wang (1995) and Mavko and Jizba (1991).

Instantaneous
Undrained

Undrained, Local
Equilibrium

Drained Pores
Undrained Cracks

Figure 1: Three time scales following rapid compression in a double-porosity medium. (a) Totally undrained.
(b) Local flow equilibrates fluid pressures between soft porosity (crack) and stiff porosity (equant pore). 
Local flow is relatively slower than global flow through cracks, so that stiff porosity is drained and soft porosity
is undrained. This case leads to the "unrelaxed bulk modulus" of Mavko and Jizba (1991).

Figure 2: Barenblatt et al.’s (1960) picture of a double porosity medium. Cracks (polygonal line segments)
produce local anisotropy, which can lead to induced pore pressures due to shear stress.


